public marks

PUBLIC MARKS with tag "deep learning"




by ogrisel (via)
Topics: Energy models, causal generative models vs. energy models in overcomplete ICA, contrastive divergence learning, score matching, restricted Boltzmann machines, deep belief networks

Modular toolkit for Data Processing (MDP)

by ogrisel
Modular toolkit for Data Processing (MDP) is a Python data processing framework. Implemented algorithms include: Principal Component Analysis (PCA), Independent Component Analysis (ICA), Slow Feature Analysis (SFA), Independent Slow Feature Analysis (ISFA), Growing Neural Gas (GNG), Factor Analysis, Fisher Discriminant Analysis (FDA), Gaussian Classifiers, and Restricted Boltzmann Machines. Read the full list.

An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation [PDF]

by ogrisel (via)
Recently, several learning algorithms relying on models with deep architectures have been proposed. Though they have demonstrated impressive performance, to date, they have only been evaluated on relatively simple problems such as digit recognition in a controlled environment, for which many machine learning algorithms already report reasonable results. Here, we present a series of experiments which indicate that these models show promise in solving harder learning problems that exhibit many factors of variation. These models are compared with well-established algorithms such as Support Vector Machines and single hidden-layer feed-forward neural networks.

YouTube - Visual Perception with Deep Learning

by ogrisel (via)
A long-term goal of Machine Learning research is to solve highly complex "intelligent" tasks, such as visual perception auditory perception, and language understanding. To reach that goal, the ML community must solve two problems: the Deep Learning Problem, and the Partition Function Problem. There is considerable theoretical and empirical evidence that complex tasks, such as invariant object recognition in vision, require "deep" architectures, composed of multiple layers of trainable non-linear modules. The Deep Learning Problem is related to the difficulty of training such deep architectures. Several methods have recently been proposed to train (or pre-train) deep architectures in an unsupervised fashion. Each layer of the deep architecture is composed of an encoder which computes a feature vector from the input, and a decoder which reconstructs the input from the features. A large number of such layers can be stacked and trained sequentially, thereby learning a deep hierarchy of features with increasing levels of abstraction. The training of each layer can be seen as shaping an energy landscape with low valleys around the training samples and high plateaus everywhere else. Forming these high plateaus constitute the so-called Partition Function problem. A particular class of methods for deep energy-based unsupervised learning will be described that solves the Partition Function problem by imposing sparsity constraints on the features. The method can learn multiple levels of sparse and overcomplete representations of data. When applied to natural image patches, the method produces hierarchies of filters similar to those found in the mammalian visual cortex. An application to category-level object recognition with invariance to pose and illumination will be described (with a live demo). Another application to vision-based navigation for off-road mobile robots will be described (with videos). The system autonomously learns to discriminate obstacles from traversable areas at long range.

DeepLearningWorkshopNIPS2007 < Public < TWiki

by ogrisel (via)
Theoretical results strongly suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need "deep architectures", which are composed of multiple levels of non-linear operations (such as in neural nets with many hidden layers). Searching the parameter space of deep architectures is a difficult optimization task, but learning algorithms (e.g. Deep Belief Networks) have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This workshop is intended to bring together researchers interested in the question of deep learning in order to review the current algorithms' principles and successes, but also to identify the challenges, and to formulate promising directions of investigation. Besides the algorithms themselves, there are many fundamental questions that need to be addressed: What would be a good formalization of deep learning? What new ideas could be exploited to make further inroads to that difficult optimization problem? What makes a good high-level representation or abstraction? What type of problem is deep learning appropriate for? The workshop presentation page show selected links to relevant papers (PDF) on the topic.

YouTube - The Next Generation of Neural Networks

by ogrisel (via)
In the 1980's, new learning algorithms for neural networks promised to solve difficult classification tasks, like speech or object recognition, by learning many layers of non-linear features. The results were disappointing for two reasons: There was never enough labeled data to learn millions of complicated features and the learning was much too slow in deep neural networks with many layers of features. These problems can now be overcome by learning one layer of features at a time and by changing the goal of learning. Instead of trying to predict the labels, the learning algorithm tries to create a generative model that produces data which looks just like the unlabeled training data. These new neural networks outperform other machine learning methods when labeled data is scarce but unlabeled data is plentiful. An application to very fast document retrieval will be described.

PUBLIC TAGS related to tag "deep learning"

ai +   DBN +   deep belief networks +   deep neural networks +   generative +   google tech talks +   hierarchy +   hinton +   ideas +   layer +   lecun +   machine learning +   open source +   optimization +   paper +   programming +   python +   RBM +   RBM. DBN +   tutorial +   video +   workshop +  

Active users

last mark : 06/05/2016 11:15

last mark : 09/08/2008 12:14